A Note on D-spaces

نویسنده

  • Gary Gruenhage
چکیده

We introduce notions of nearly good relations and N-sticky modulo a relation as tools for proving that spaces are D-spaces. As a corollary to general results about such relations, we show that Cp(X) is hereditarily a D-space whenever X is a Lindelöf Σ-space. This answers a question of Matveev, and improves a result of Buzyakova, who proved the same result for X compact. We also prove that if a space X is the union of finitely many D-spaces, and has countable extent, then X is linearly Lindelöf. It follows that if X is in addition countably compact, then X must be compact. We also show that Corson compact spaces are hereditarily D-spaces. These last two results answer recent questions of Arhangel’skii. Finally, we answer a question of van Douwen by showing that a perfectly normal collectionwise-normal non-paracompact space constructed by R. Pol

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on Volterra and Baire spaces

 In Proposition 2.6 in (G‎. ‎Gruenhage‎, ‎A‎. ‎Lutzer‎, ‎Baire and Volterra spaces‎, ‎textit{Proc‎. ‎Amer‎. ‎Math‎. ‎Soc.} {128} (2000)‎, ‎no‎. ‎10‎, ‎3115--3124) a condition that‎ ‎every point of $D$ is $G_delta$ in $X$ was overlooked‎. ‎So we‎ ‎proved some conditions by which a Baire space is equivalent to a‎ ‎Volterra space‎. ‎In this note we show that if $X$ is a‎ ‎monotonically normal $T_1...

متن کامل

A note on convergence in fuzzy metric spaces

The sequential $p$-convergence in a fuzzy metric space, in the sense of George and Veeramani, was introduced by D. Mihet as a weaker concept than convergence. Here we introduce a stronger concept called $s$-convergence, and we characterize those fuzzy metric spaces in which convergent sequences are $s$-convergent. In such a case $M$ is called an $s$-fuzzy metric. If $(N_M,ast)$ is a fuzzy metri...

متن کامل

A note on lacunary series in $mathcal{Q}_K$ spaces

In this paper, under the condition that $K$ is concave, we characterize lacunary series in $Q_{k}$ spaces. We improve a result due to H. Wulan and K. Zhu.

متن کامل

A Note on Belief Structures and S-approximation Spaces

We study relations between evidence theory and S-approximation spaces. Both theories have their roots in the analysis of Dempsterchr('39')s multivalued mappings and lower and upper probabilities, and have close relations to rough sets. We show that an S-approximation space, satisfying a monotonicity condition, can induce a natural belief structure which is a fundamental block in evidence theory...

متن کامل

A note on the remainders of rectifiable spaces

In this paper‎, ‎we mainly investigate how the generalized metrizability properties of the remainders affect the metrizability of rectifiable spaces‎, ‎and how the character of the remainders affects the character‎ ‎and the size of a rectifiable space‎. ‎Some results in [A. V‎. ‎Arhangel'skii and J‎. ‎Van Mill‎, ‎On topological groups with a first-countable remainder‎, ‎Topology Proc. 42 (2013...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008